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LETTER TO THE EDITOR 

On the thermodynamic definition of surface stress 

E M G u t “  
Depmment of Materials Engineering, BenOurion University of the Negev. PO Box 653, Beer- 
Sheva 84105, Israel 

Received 22 September 1995 

Abstract. Surface energy and surface stress have been thoroughly discussed in the literature. 
However. the widely accepted definition of surface s m s  as the strain derivative of the m a l  free 
surface energy divided by the surface area (Shuttleworth, Herring, etc) is inconsistent with the 
correct definition of a stress tensor (given in continuum elasticity theory) as the swain derivative 
of the speei/c fm energy. We analyse this anomaly in detail in order m prevent ck m n e o u s  
use of the surface stress definition. 

There exist two principal approaches to surface stress analysis: the surface layer of finite 
thickness method [I] and Gibhs’ geometrical method 121. The latter involves a certain 
dividing surface, and the ~ excess of energy, entropy and other extensive properties is 
conventionally referred to it. The advantage of the method involving the surface layer lies 
in the fact that the surface layer of finite thickness actually exists. Its excessive free energy 
(with respect to the bulk phase) is due to a physicalsurface of discontinuity disturbing the 
mechanical equilibrium, inherent to the bulk phase, and leading to the layer deformation. 
Although the inhomogeneity distribution in the surface layer is, in general, of an asymptotic 
character, we can speak about its effective thickness. For instance, even in liquid CC14 at 
293 K a deviation-of 1% from Pascal’s law can be achieved only at a distance of forty 
molecular spacings, whereas one of 0.1% can be achieved at the distance of eighty-six 
 molecular^ spacings from the free surface [3]. The specific free energy of the surface may 
then be considered as Helmholtz’s free energy calculated for an element of surface layer 
resting upon a unit surface area. 

Surface stress in a solid was determined [&lo] as the derivative of the totd surface 
free energy with respect to strain divided by the surface area. This is inconsistent with the 
defidtion given in the continuum elasticity theory [ I l l .  Such a representation, in particular, 
results in the following: as in a liquid, in a globally relaxed state the stress in an anisotropic 
surface is given by the specific surface energy of the unstrained surface [5 ]  or by that of 
the surfaces under ‘equilibrium’ strain, as corrected later [6]. This leads to the solid-surface 
representation using the model of an extensible liquid film, where the surface area grows at 
the expense of the material transfer from the bulk to the surface. As was noted by Gibbs [2], 
this is apparently possible only in certain particular cases, where a solid can be considered 
as a highIy viscous fluid. 

Definition of surface stress in terms of the strain derivative of the to& surface free 
energy [5-IO] leads to an expression for the surface stress in the form of a sum of two 
terms: 
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that was proposed earlier by Shuttleworth [4] in the form 

and became fundamental for all subsequent papers. 
Here yo is the normal component of the surface stress equal to the surface tension [rl], 

Fs is the Helmholtz free surface energy per unit area of original (undeformed) surface 
area (Wolf [5], when citing Shuttleworth's work [4], points out that Shuttleworth derived 
equation (2) for an unstrained surface), A is the surface area, 6jj is the Kronecker delta- 
function, U!, and ctj are the surface stress and surface strain tensors, respectively. 

However, one can easily see that equations (1) and (2) are basically incorrect, since in 
the elasticity theory, stress tensor components are defined by the strain derivative of the 
specij5c (not total) Helmholtz free energy representing the total free energy referred to a 
unit of original volume or surface area. Therefore, the surface stress tensor, consisting, as 
usual, of a mean stress tensor and a deviator stress tensor [ l l ,  121, should be described by 

where E ;  is a deviator strain tensor, instead of the equations (1) and (2). 
The erroneous nature of equations (1) and (2) results from the confusing of different 

thermodynamic systems. The first of the terms is caused by forming a new surface with the 
same properties (the specific surface energy remaining unchanged). Tho other describes a 
changing specific surface energy due to the strain of the existing surface. However, these 
two processes (at least, in the limit) are relevant to completely different materials. The first 
represents the appearance of surface tension in a fluid with movable molecules, while tho 
second represents the strain of a solid, where the total number of atoms in the surface layer 
remains constant, while their spacing changes. Therefore, it is not legitimate to sum these 
two terms to describe the surface stress in a solid. 

The reason for this misuse is the incorrect application of the thermodynamic definition 
of stress which should be defined as the strain derivative of the specific free energy, i.e., of 
the energy referred to a unit volume or surface [l I]. It is especially emphasized 1111 that 
all thermodynamic values refer to the amount of matter confined in an unstrained volume or 
surface, the mentioned amount remaining unchanged in the process of strain of a solid, i.e., 
to a unit volume or surface of an unstrained solid. The total energy can always be obtained 
by integrating over the volume or surface of the unstrained solid [ll]. 

It is only during the solid surface layer deformation that a reversible surface growth 
goes on with an unchanged amount of the material on the surface. The case of liquid film 
extension is quite different. Here the formation of the new surface proceeds not at the 
expense of elastic (reversible) strain, but at the expense of adding (irreversible transport 
phenomena) a certain amount of matter from the bulk material to the surface layer. In 
this case, the total free surface energy grows proportionally to the surface increment, the 
specific free energy remaining,practically unchanged. Thus, the differentiation of the total 
surface energy with respect to the strain, taking into account that the area allowed within 
the differential sign represents a function of strain 141. has no physical meaning. 

Indeed, equation (2) was obtained [4] using formal differentiation of the total Helmholtz 
free surface energy F = AF?: 

d F  = d(AFS) = F' + A- dA. ( 5)  (4) 
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It has been generally accepted practice to regard the expression in brackets in 
equation (4) as an ambiguous one, dependent on thgway in which the surface changes 
121. The surface area may be increased in two different ways: (i) the first consists of 
forming a new surface identical to the original one in nature, at the expense of increasing 
the number of atoms on the surface coming from the bulk material; (ii) the second consists 
of stretching the exisring surface, which alters its states of strain, whilst the number of 
surface atoms remains unchanged. 

For case (i), the specific surface energy is independent of A, and we obtain the following 
for dF: 

dg)F = P d A .  (5) 

d(ij)F = yodA (6) 
for an isotropic solid deformed by an equal stretch in all directions. He further combines 
equations (6) and (4), i.e. d F  = dgi)F, and comes to equation (2) for yo. However, equating 
equation (6) to equation (4) is incorrect, since equation (4) formally describes both cases of 
surface area increase, while equation (6) only describes case (ii). Such equating canies us 
to absurdity, because these equations are relevant to dgerent substances. In fact, one could 
as legitimately apply case (i) and formally equate equations (5) and (4), i.e. d F  = d@, 
which would lead to 

For case (ii), Shuttleworth [ I ]  wrote the following 

dFs 
dA 

F~ = Fs + A- (7) 

Obviously, such an operation could have been accomplished only under the condition 

Consequently, a respective limiting condition should exist for case (ii), as well. In fact, 
dF’jdA = 0, which only represents the condition of the realization of case (i). 

taking into account that dA/A = d t k k .  equation (6) may be rewritten 3 

dit% = AdF” (8) 
since the increment of the specific surface energy due to deformation dF’ = yo dEkk [ 111. 

If we now formally equate equations (8) and (4), i.e. d F  = d(ii) F, we obtain 

d(AFS) = AdFS (9) 
which requires the limiting condition A = constant. This means that the change in the 
surface area at the expense of surface stress appearance should be so small as to allow 
one to neglect the additional term Fr dA in the increment of the total surface energy (9). 
This corresponds to the assertion of the elasticity theory Ell] saying that all thermodynamic 
values are referred to the original (i.e., before the deformation) volume or surface area of 
the solid. 

Hence, the equating of equations (5) and (6) taken separately from equation (4) is, on 
the whole, invalid in any case, because they are relevant to different substances (a liquid 
and a solid). For extreme cases, where either case (i) or case (ii) is realized, one should 
separately equate equations (5) and (6) to the respective terms in the right-hand part of 
equation (4). 

For a certain hypotheticai intermediate case (for instance, that of an isotropic amorphous 
body considered as a highly viscous supercooled liquid [2]), one should sum equations (5) 
and (6) as independent contributions of both cases and consider equation (4) as a complete 
differential with respect to the variables A and F’. However, here it is also illegitimate to 
equate this equation to Aujjkij (i.e., to d(ii)F), as Herring [ 8 ]  does, because in the present 
intermediate case d F  # d(ii)F. 
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Thus, in the extreme case of a liquid, equation (6) denotes the work done against the 
surface stress to create a new surface. It is equivalent to the increase in the total surface 
energy according to equation (3, i.e., from the comparison of equations (5) and (6), yo = FS 
is obtained, as usual. However, in the extreme case of a solid, the energy contribution due 
to a new surface formation according to equation (5 )  is negligible in comparison with 
the contribution of the surface layer deformation arising due to asymmetric force fields of 
surface atoms (in comparison with bulk atoms). Therefore, yo and ujj are defined only by 
the value of the strain derivative of the specifi (not total) free surface energy arising due 
to this stnin. 

There is a further point to be made, We can also show some elementary incorrectness in 
the formulation of principal equations. For instance, the last term in the right-hand part of 
equation (1.9) in [9] does not agree in dimension with other summands due to the factor A. 
Let us clear up whether the elimination of the factor A (if i t  was a typographical misprint) 
in equation (1.9) will change, and save, the situation. Equation (1.9) is written in [9] as 
follows: 

d U = g l  d S + e l  d V + E l  d N + A c E I  dcij 

dU = T d S  - P dV + p d N  + A c u i j  dcij 
(10) 

as V,N.A av  S.N.A aN S.V.A i.j asij S.V,N 

i. j 

where U is the internal energy of a system, S is the entropy, V is the volume, N is the 
particle number, T is the temperature, P is the pressure and p is the chemical potential. 
Let us first demonstrate that, even if we eliminate the factor A to save the dimensions in 
the last term of the right-hand part of the upper equation (IO), the lower equation does not 
follow from the upper one, because the inequality 

is valid if A is not constant (the constant variables are S, V and N only). Here U0 is the 
specific surface energy equal to y in equation (1.5) of [9]: 

U = TS - ~ P V  + p N  + yA. (12) 
An equality can take the place of this inequality (1 1) only under the condition A = constant. 
However, this contradicts the entire analysis in [9], A being a thermodynamic variable. Thus, 
there is the formal equality 

dsjj dUls.v,N - 
i. j 

au 
‘.I 

- = A c ( u i j  + y&j) dsjj 
i. j 

as used in Shuttleworth’s formalism [4] (of course, in this expression uij = aUo/acij is 
satisfied [l l]) .  But even this formal equality (13), transforming the lower equation (10) into 

dU = T d S  - P dV + p d N  + A C(qj + y6jj) dcjj = T dS - P dV 
i. j 

+ p d N  + y dA + A xuij dsij, (14) 
i. j 

cannot help the author of [91, since in this case joint use of his equations (1.9) and (1.5) 
does not lead to his equation (l.lO), represented here by equation (l), etc. 
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However, what is much more important (than the dimension problem) is that it is 
basically impossible to use equations (1.9) and (1.5) jointly in order to obtain equation (1.10) 
in [9]. In fact, equations (1.9) and (1.5) refer to diferent thermodynamic systems. 
Equation (1.5) describes the system with a new surface formed at the expense of ‘...a 
cleavage process’, while equation (1.9) describes the system where ‘...variations in the area 
of the system ... are realized ... by stretching’. In the first case y = constant, while in the 
second the specific surface energy changes due to deformation. Therefore, equations (1.5) 
and (1.9) involve different thermodynamic variables, and it seems absurd to apply them 
jointly to obtain equation (l.lO), etc. Due to this absurdity, equation (1.10) that the author 
of [9] calls the Gibbs-Duhem equation cannot, in fact, bear this name, since it contains 
differentials of the extensive parameters A and q j .  This is inconsistent with classical 
thermodynamics stating that the Gibbs-Duhem equation presents the relationship between 
the intensive parameters in the differential form. 

Thus, this simple analysis shows that Shuttleworth’s definition of surface stress should 
be substituted with the s definition of the stress tensor generally accepted in the elasticity 
theory as the strain derivative of the specific surface free energy. 
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